Rings which are duo on Zhou radical
نویسندگان
چکیده
In ring theory, duoness and Zhou radical which is known as delta ideal have important roles. this paper, we consider both concepts together by studying on radical. By means of study, obtain a new kind generalizations commutativity. Firstly, determine some rings, then applied to the duo property so introduce notion right (left) dZr rings. We show that not left-right symmetric. investigate relations between rings certain also deal with extensions in terms property.
منابع مشابه
On p.p.-rings which are reduced
Throughout the paper, all rings are associative rings with identity 1. The set of all idempotents of a ring R is denoted by E(R). Also, for a subset X ⊆ R, we denote the right [resp., left] annihilator of X by r(X) [resp., (X)]. We call a ring R a left p.p.-ring [3], in brevity, an l.p.p.-ring, if every principal left ideal of R, regarded as a left R-module, is projective. Dually, we may define...
متن کاملRings in which elements are the sum of an idempotent and a regular element
Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...
متن کاملQuasi-Duo Rings and Stable Range Descent
In a recent paper, the first author introduced a general theory of corner rings in noncommutative rings that generalized the classical theory of Peirce decompositions. This theory is applied here to the study of the stable range of rings upon descent to corner rings. A ring is called quasi-duo if every maximal 1-sided ideal is 2-sided. Various new characterizations are obtained for such rings. ...
متن کاملRadical Extensions of Rings
Jacobson's generalization [5, Theorem 8] of Wedderburn's theorem [8] states that an algebraic division algebra over a finite field is commutative. These algebras have the property that some power2 of each element lies in the center. Kaplansky observed in [7] that any division ring, or, more generally, any semisimple ring, in which some power of each element lies in the center is commutative. Ka...
متن کاملCommutative Subdirectly Irreducible Radical Rings
A ring R is radical if there is a ring S (with unit) such that R = J (S) (the Jacobson radical). We study the commutative subdirectly irreducible radical rings and show that such a ring is noetherian if and only if is finite. We present a reflection of the commutative radical rings into the category of the commutative rings and derive a lot of examples of the subdirectly irreducible radical rin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The São Paulo Journal of Mathematical Sciences
سال: 2022
ISSN: ['2316-9028', '1982-6907']
DOI: https://doi.org/10.1007/s40863-022-00323-x